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Abstract

The first part of this work describes a model for the passive transport of solutes
through membrane systems formed by a low porosity film and the adjacent
boundary layers. Model equations allow correlation of the overall phenome-
nological coefficient of diffusive resistance with the morphological and structural
characteristics of the membrane system. Based on the general solution, the total
resistance appears to be the result of three contributions related to the membrane
itself, the associated boundary layers, and the pore end effects. Under specific con-
ditions it is possible to obtain an explicit and simple functional dependence for
each of these contributions as well as to express the solute concentrations in the
membrane-boundary layer interfaces.

INTRODUCTION

An important aspect of the behavior of membranes—either biological
or artificial—in the presence of fluid phases, appears when the gen-
eralized force applied on them is a gradient of chemical potential
associated with a solute concentration difference. This force induces a
solute flux through the membrane barrier (the so-called diffusive permea-
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tion) that tends to make the concentrations of both sides equal. This pro-
cess is usually characterized by the proportionality coefficient between
the flux and the driving force (diffusive permeability in this case).

For a given difference of concentrations, the diffusive permeation of a
chemical species is governed by the nature of the membrane and by the
experimental conditions (1, 2). In fact, it is known that the homogeneous
or heterogeneous character of the membrane affects the flux in a different
way, and also that the presence of hydrodynamic boundary layers (or stag-
nant layers) next to the membrane acts as an additional barrier to diffu-
sion (3, 4).

However, it is common practice to analyze the mass transfer through
heterogeneous membranes as if they were homogeneous permeable mem-
branes, that is to say, without considering the effects of interaction be-
tween the pores and the subsequent distortion of the flux. In other cases
the effect of boundary layers is omitted (5), although at times they can con-
trol the flux. A phenomenological treatment of permeabilities (or asso-
ciated resistances) is sometimes applied, but without relating each term to
the intrinsic characteristics (geometrical, structural, etc.) of each element
of the whole barrier.

Part I of this series is devoted to a theoretical study of diffusive permea-
tion through a complete membrane system, i.e., a simultaneous considera-
tion of the effects of the membrane itself, the pore end, and associated
barriers such as stagnant layers. The treatment we use follows Keller and
Stein (6) but is based on experimental results related to the structural and
functional characterization of microporous track-etched membranes.
Once the complex relationship between the mass transfer coefficient and
the intrinsic parameters of the membrane system is established, we will
obtain an approximation, valid in a wide range of conditions of work,
which considerably simplifies the use of the model equations.

In Part II (7), the model is applied to the results of experiments of dif-
fusive permeation on the aforementioned membranes, which will permit
estimation of the value of certain parameters of interest and establishment
of the concentration profiles through the membrane system.

MORPHOLOGICAL CHARACTERIZATION AND MODELIZATION

From a morphological-structural point of view, microporous mem-
branes are normally characterized by a small number of parameters: pore
size, surface pore density, and thickness. These are generally considered
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sufficient because the thickness, /, is identified with the pore length and it
is possible to obtain the porosity from the pore radius and the surface pore
density.

In models for the fluxes, it is usually assumed that pores are so closely
spaced that the membranes is homogeneously permeable and shows a dif-
fusive resistance, R, related to its porosity, €, by (8 9)

R, = l/eD, (1)

where D, is the pore diffusivity.
For boundary layers of thickness &:

Rs = 8/Dg (2)

where D; is the corresponding diffusivity.
The overall resistance, Ry, is Ry = R,, + 2R;, that is,

1. 2%
Ry=—+28
r= D, Ds 3)

because it corresponds to an one-dimensional model of diffusion resistan-
ces in series.

Nevertheless, at times the problem is more complex because the mem-
branes present irregularities in their morphologies (variations in the pore
sizes, sloping in their trajectories, etc.) which require a deeper charac-
terization and the introduction of these details in the models. It is also
necessary to consider an additional effect which is characteristic of mem-
branes with low or moderate porosities, and which has been commented
on by several authors (Z, 5). Due to the lack of homogeneity on the surface
of these types of membranes, the streamlines of diffusive flux are distorted
around the mouth of each pore.

This requires a component of the diffusive velocity parallel to the mem-
brane surface, as well as the normal one, to be considered; i.e., treatment
of a two-dimensional flux is required.

Our samples are a group of track-etched membranes of polycarbonate
(Nuclepore) with nominal pore diameters of S, 2, 0.8, 0.4, and 0.1 ym,
denoted by NS, N2, NO8, etc. in this paper. These membranes have been
characterized in a previous study (/0) by scanning electron microscopy
(SEM) of their surfaces. We obtained results on the distribution of pore
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sizes, the surface pore radius, r,, and the surface pore density, N, from
which it was possible to obtain the fractional open area of the membrane,
given by n?N.

By using transmission electron microscopy (TEM) measurements, we
have been able to determine the thickness, /, of the transverse sections and
to detect the presence of internal widening of pores (/1). Finally, from
measurements of the hydrodynamic permeability coefficient, and taking
into account the correction due to the angular tortuosity factor, the effec-
tive radius of the pores, r., and the corresponding porosities, €,, have been
obtained by using the Hagen-Poiseuille law (12).

Table 1 summarizes the most relevant results for the present study. As
can be seen, the values of the parameters that characterize the membrane
surface differ considerably from those inside the membrane. This result
will affect the membrane’s functional behavior under the action of some
generalized force and so must be taken into account when a proper model
for fluxes is proposed.

TWO-DIMENSIONAL MODEL

The membrane is considered as a film of thickness /, pierced by pores
of approximately cylindrical shape (whose surface radius can differ from
their effective radius, a) equally distributed on its surface, the distance be-
tween the centers of two adjacent pores being 2b.

The steady-state diffusive flux, J,, of a chemical species through the
membrane appears between two homogeneous solutions of concen-
trations ¢, and ¢, (¢, > ¢,). The effect of the viscous resistance of the solvent
in the vicinity of the membrane will be simulated by two fluid stagnant

TABLE 1
Results Obtained for the More Relevant Structural Parameters of the Membranes Studied
(Nuclepore of polycarbonate)

Membrane
Parameter N5 N2 NO8 No4 NO1
re (nm) 1.81 0.79 0.344 0.188 0.044
wiN (%) 5.5 5.7 113 10.1 33
r, (um) 207 111 0.52 0.258 0.065
g, (%) 15 10.6 216 211 75

I (um) 10.7 106 109 109 64
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X

F1G. 1. Cross section of a unit cell of the porous membrane (shaded) and the associated

boundary layers (Regions I and III), showing their characteristic geometrical parameters. In

Region II the approximated profiles of a real pore (continuous line) and of the equivalent
pore of radius g, with the same functional behavior (broken line), are included.

films (boundary layers) of thickness §, and §,, respectively. Nevertheless,
due to symmetry, they can be assumed to be of the same thickness, §,
without loss of generality.

The concentrations in the two membrane-boundary layer interfaces
are represented by c] and ¢;, respectively (Fig. 1).

Let us suppose that the diffusive layers can be divided around each pore
by fictitious surfaces perpendicular to the membrane plane and imperme-
able to the solute. The pattern of identical and independent cells, in which
each pore has associated with it a part of the boundary layers, allows us to
take as a base for the analysis only one such elemental cell.

Formally, each cell will be considered as subdivided into three cylin-
drically symmetrical regions: two regions corresponding to the stagnant
films, where the diffusivity is D; [represented as (I) and (III) in Fig. 1] and
the pore itself where the diffusivity is D, [represented by (II) in the same
figure]. It is also convenient to represent the geometrical characteristics of
the system by means of the following dimensionless parameters:

B=>bla;, A=8/a; o=1lla (4)
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In the steady state, Fick’s second law is expressed (/3) by
DVt =0 5

where D is the diffusion coefficient of the diffusing substance and c is
the concentration.

In cylindrical coordinates (p,0,x), and supposing that because of axial
symmetry, ¢ is independent of the angular coordinate, Eq. (5) can be ex-
pressed by

d 1 oc d%
302 + > 9p + e 0 (6)
Now, it is necessary to solve Eq. (6) for each of the regions mentioned pre-
viously, under the corresponding boundary conditions. In this case we
have followed the procedure pointed out in Ref. 6, which is based on the
use of Hankel’s finite transform (/4-16). Later, the condition of steady-
state flux will permit us to equate the solutions at the boundaries (x = 0
and x = | ) and thus to obtain expressions for the overall diffusive resis-
tance, Ry (or the corresponding diffusive permeability, P = 1/R;) and for
the concentrations ¢] and cj;

_ 1l _e¢c—c;_ aop®  8ap’
Ry = P; 7, 2 D, + D, H(B.\) (7
where
_1 & Jo,a) tan h(a,ar)
HBX) = 7 2™ (0,7 osab) ®

Jy and J; are the first kind Bessel functions of zero- and first-order, respec-
tively, and the values a, represent the zeros of the equation J, (a,b) =
0. Also:

€L — €6

Q=G -o%T

%)

L~ C

=ct
QT QTHNT

(10)
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where I is given by

wD;

r _
4D H(B.A)

(1D

The use of Eq. (7), (9), and (10) in a particular case requires a previous
evaluation of H(B,A), which can be laborious. In the study by Keller and
Stein (6), this function was calculated for several values of p and A in the
range 1 to 10%; however, as we will see later, the function H(B,A) can be
evaluated by a simple approximation valid for a wide range of cases of
practical interest.

LINEAR APPROXIMATION OF H(B,\)

If we evaluate in an explicit form the zeroth-order eigenfunction in the
series expansion of H(B,\), we obtain

H(B,\) = Ao, 1 o Ji(a,a) tan h(a,a)) 12)
ap* B (0a)Vh(amaB)

This result suggests that, for limited values of the argument, the previous
function can approximate to a simple expression. In fact, we have done a
linear regression analysis on H against A/B considering the intervals
14 < B < 10° and 8 < A < 10°, and we have obtained the following
correlation:

H(B,\) = 0.250(A/B*) + 0.164 (13)

with a correlation coefficient of 0.9999 for a total of 100 data points.

As can be observed, the validity range of the above approximation cor-
responds to a wide range of porosity and pore size values. Because p* =
1/, the limit values B = 1.4 and B = 10° correspond approximately to
values of € = 0.5 and € = 1074, respectively, thus including a wide range of
membrane porosities. For A, assuming an average value for 8 of about 50
pm (I7-19), the approximation would be valid for membranes with pore
radii between 0.05 and 6 pm.
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With that, substituting Eq. (13) in Eq. (7) gives

2 2
1 _agof, 2ah 355 487 (14)

Rr=3="D, ", Dy

where a third term appears which is obviously related to the pore end ef-
fects, which did not appear in the one-dimensional treatment.

Now, if we express Eq. (3) equally as a function of the dimensionless
parameters, we have

awp? | 2al

D, ' D,

Ry = (15)

By comparison of Egs. (15) and (7), we conclude that both models agree
when H(B,\) = A/4B% but as we have stated in Eq. (12), this is the value
which H(/A) takes when we only consider the first term in their series ex-
pansion, that is, when the pore end effects included in the remainder
terms of the expansion are not considered. So the one-dimensional model
can be considered as a first-order approximation for the analyzed model
and, therefore, as a particular case.

Finally, expressing Eq. (14) as a function of measurable properties:

I, 28 1312

R, =
T eD, Ds nrND,

(16)

or, simply:
Rr =R, + 2R; + 2R, 17

Similarly, after substitution of Eq. (13) into Eq. (11), we obtain for the
concentrations in the membrane-boundary layer interfaces ¢} and c} :

' _6 ¢
‘T2 a (18)

)
I

]
2+ 0

&
N
|

=c, + (19)
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with

= (D,,) nr2NS + 0.656r, (20)

In conclusion, we can say that the proposed model considers, besides
the influence of the membrane and the boundary layers, the influence
derived from the inhomogeneities in the pore surface distribution. Thus, a
connection between the permeability results and the morphology of the
membrane system has been established without compromising the classi-
cal phenomenological formalism of an arrangement of diffusive resistan-
ces in series, and including as a limiting case thatin which the pore end ef-
fects are negligible.

On the other hand, the approximation used for H(B,A) does not include
an important restriction in the utilization of the model, because it is valid
for a great number of porous membranes.

SYMBOLS

a radius of the equivalent pore

b half-distance between the centers of two adjacent pores

C1, € bulk solute concentrations

), ¢ solute concentrations at the membrane-boundary layer
interfaces

D, D, solute diffusivities through the membrane pore and
boundary layer, respectively

H(PBA) function defined by Eq. (8)

Jo J, Bessel functions of zeroth and first order, respectively

Iy diffusive flux of solute

! membrane thickness

N surface pore density of membrane

P, total diffusive permeability coefficient

R, R, R, diffusive resistances of the membrane, boundary layer,
and pore end, respectively

R, diffusive resistance of the membrane system (total re-

sistance)
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effective pore radius (evaluated from Hagen-Poiscuille
law)

surface pore radius

time

axial coordinate inside the pore

Greeks

4o Do E>P OO

~

zeros of equation Jy(a,b) = 0

b/a (dimensionless geometrical parameter)
boundary layer thickness

fractional open area of the membrane.

effective porosity of membrane, calculated from r,
8/a (dimensionless geometrical parameter)

I/a (dimensionless geometrical parameter)

radial coordinate inside the pore

relationship between parameters of the membrane sys-
tem, defined by Eq. (20)

dimensionless relationship defined by Eq. (11)
angle coordinate

Laplacian operator
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