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Resistance and Mass Transfer Control through Passive 
Porous Films. 1. A Transport Model for 
Diffusive Permeability 

F. MARTfNEZ-VILLA, J. I. ARRIBAS, and F. TEJERINA 
DEPARTAMENTO FISICA APLICADA I1 
FACULTAD DE CIENCIAS 
UNIVERSIDAD DE VALLADOLID 
47005 VALLADOLID, SPAIN 

Abotrac: 

The first part of this work describes a model for the passive transport of solutes 
through membrane systems formed by a low porosity film and the adjacent 
boundary layers. Model equations allow correlation of the overall phenome- 
nological coefficient of diffusive resistance with the morphological and structural 
characteristics of the membrane system. Based on the general solution, the total 
resistance appears to be the result of three contributions related to the membrane 
itself, the associated boundary layers, and the pore end effects. Under specific con- 
ditions it is possible to obtain an explicit and simple functional dependence for 
each of these contributions as well as to express the solute concentrations in the 
membrane-boundary layer interfaces. 

INTRODUCTION 

An important aspect of the behavior of membranes-either biological 
or artificial-in the presence of fluid phases, appears when the gen- 
eralized force applied on them is a gradient of chemical potential 
associated with a solute concentration difference. This force induces a 
solute flux through the membrane barrier (the so-called diffusive permea- 
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110 MARTINEZ-VILLA, ARRIBAS, AND TEJERINA 

tion) that tends to make the concentrations of both sides equal. This pro- 
cess is usually characterized by the proportionality coefficient between 
the flux and the driving force (diffusive permeability in this case). 

For a given difference of concentrations, the diffusive permeation of a 
chemical species is governed by the nature of the membrane and by the 
experimental conditions (1, 2). In fact, it is known that the homogeneous 
or heterogeneous character of the membrane affects the flux in a different 
way, and also that the presence of hydrodynamic boundary layers (or stag- 
nant layers) next to the membrane acts as an additional barrier to diffu- 
sion (3, 4). 

However, it is common practice to analyze the mass transfer through 
heterogeneous membranes as if they were homogeneous permeable mem- 
branes, that is to say, without considering the effects of interaction be- 
tween the pores and the subsequent distortion of the flux. In other cases 
the effect of boundary layers is omitted (5), although at times they can con- 
trol the flux. A phenomenological treatment of permeabilities (or asso- 
ciated resistances) is sometimes applied, but without relating each term to 
the intrinsic characteristics (geometrical, structural, etc.) of each element 
of the whole barrier. 

Part I of this series is devoted to a theoretical study of diffusive permea- 
tion through a complete membrane system, i.e., a simultaneous considera- 
tion of the effects of the membrane itself, the pore end, and associated 
barriers such as stagnant layers. The treatment we use follows Keller and 
Stein (6) but is based on experimental results related to the structural and 
functional characterization of microporous track-etched membranes. 
Once the complex relationship between the mass transfer coefficient and 
the intrinsic parameters of the membrane system is established, we will 
obtain an approximation, valid in a wide range of conditions of work, 
which considerably simplifies the use of the model equations. 
In Part I1 (3, the model is applied to the results of experiments of dif- 

fusive permeation on the aforementioned membranes, which will permit 
estimation of the value of certain parameters of interest and establishment 
of the concentration profiles through the membrane system. 

MORPHOLOGICAL CHARACTERIZATION AND MODELIZATION 

From a morphological-structural point of view, microporous mem- 
branes are normally characterized by a small number of parameters: pore 
size, surface pore density, and thickness. These are generally considered 
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PASSIVE POROUS FILMS. I 111 

sufficient because the thickness, I, is identified with the pore length and it 
is possible to obtain the porosity from the pore radius and the surface pore 
density. 
In models for the fluxes, it is usually assumed that pores are so closely 

spaced that the membranes is homogeneously permeable and shows a dif- 
fusive resistance, R,, related to its porosity, E, by (8, 9) 

where Dp is the pore diffusivity. 
For boundary layers of thickness 6: 

where Db is the corresponding diffusivity. 
The overall resistance, RT, is RT = R,  + 2Rs, that is, 

I 26 RT = - +- 
eDp DS ( 3 )  

because it corresponds to an one-dimensional model of diffusion resistan- 
ces in series. 

Nevertheless, at times the problem is more complex because the mem- 
branes present irregularities in their morphologies (variations in the pore 
sizes, sloping in their trajectories, etc.) which require a deeper charac- 
terization and the introduction of these details in the models. It is also 
necessary to consider an additional effect which is characteristic of mem- 
branes with low or moderate porosities, and which has been commented 
on by several authors (1.5). Due to the lack of homogeneity on the surface 
of these types of membranes, the streamlines of diffusive flux are distorted 
around the mouth of each pore. 

This requires a component of the diffusive velocity parallel to the mem- 
brane surface, as well as the normal one, to be considered; i.e., treatment 
of a two-dimensional flux is required. 

Our samples are a group of track-etched membranes of polycarbonate 
(Nuclepore) with nominal pore diameters of 5, 2, 0.8, 0.4, and 0.1 ym, 
denoted by N5, N2, N08, etc. in this paper. These membranes have been 
characterized in a previous study (10) by scanning electron microscopy 
(SEM) of their surfaces. We obtained results on the distribution of pore 
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112 MARTINEZ-VILLA, ARRIBAS, AND TEJERINA 

sizes, the surface pore radius, r,, and the surface pore density, N, from 
which it was possible to obtain the fractional open area of the membrane, 
given by nZN. 

By using transmission electron microscopy (TEM) measurements, we 
have been able to determine the thickness, 1, of the transverse sections and 
to detect the presence of internal widening of pores (ZZ). Finally, from 
measurements of the hydrodynamic permeability coefficient, and taking 
into account the correction due to the angular tortuosity factor, the effec- 
tive radius of the pores, r, and the corresponding porosities, E, have been 
obtained by using the Hagen-Poiseuille law (12). 

Table 1 summarizes the most relevant results for the present study. As 
can be seen, the values of the parameters that characterize the membrane 
surface differ considerably from those inside the membrane. This result 
will affect the membrane’s functional behavior under the action of some 
generalized force and so must be taken into account when a proper model 
for fluxes is proposed. 

TWO-DIMENSIONAL MODEL 

The membrane is considered as a film of thickness I ,  pierced by pores 
of approximately cylindrical shape (whose surface radius can differ from 
their effective radius, a) equally distributed on its surface, the distance be- 
tween the centers of two adjacent pores being 2b. 

The steady-state diffusive flux, Jd, of a chemical species through the 
membrane appears between two homogeneous solutions of concen- 
trations cI and c2 (cI > c2). The effect of the viscous resistance of the solvent 
in the vicinity of the membrane will be simulated by two fluid stagnant 

TABLE 1 
Results Obtained for the More Relevant Structural Parameters of the Membranes Studied 

(Nuclepore of plycarbonate) 

Membrane 

Parameter N5 N2 NO8 NO4 NO1 

r, (Pm) 1.81 0.79 0.344 0.188 0.044 
d N  (%I 5.5 5.7 11.3 10.1 3.3 

ee (%I 7.5 10.6 27.6 21.1 7.5 
re (w) 2.07 1.11 0.52 0.258 0.065 

1 (Pm) 10.7 10.6 10.9 10.9 6.4 
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c1 

B u l k  
solution 
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C2 

b t r l k  
s o l ~ r t i u r i  

FIG. 1. Cross section of a unit cell of the porous membrane (shaded) and the associated 
boundary layers (Regions I and III), showing their characteristic geometrical parameters. In 
Region I1 the approximated profiles of a real pore (continuous line) and of the equivalent 

pore of radius a, with the same functional behavior (broken line), are included. 

films (boundary layers) of thickness SI and 6*, respectively. Nevertheless, 
due to symmetry, they can be assumed to be of the same thickness, 6, 
without loss of generality. 

The concentrations in the two membrane-boundary layer interfaces 
are represented by ci and ci, respectively (Fig. 1). 

Let us suppose that the diffusive layers can be divided around each pore 
by fictitious surfaces perpendicular to the membrane plane and imperme- 
able to the solute. The pattern of identical and independent cells, in which 
each pore has associated with it a part of the boundary layers, allows us to 
take as a base for the analysis only one such elemental cell. 

Formally, each cell will be considered as subdivided into three cylin- 
drically symmetrical regions: two regions corresponding to the stagnant 
films, where the diffusivity is D, [represented as (I) and (111) in Fig. 11 and 
the pore itself where the diffusivity is Dp [represented by (11) in the same 
figure]. It is also convenient to represent the geometrical characteristics of 
the system by means of the following dimensionless parameters: 
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114 MARTINEZ-VILLA, ARRIBAS, AND TEJERINA 

In the steady state, Fick‘s second law is expressed (13) by 

DV6 = 0 ( 5 )  

where D is the diffusion coefficient of the diffusing substance and c is 
the concentration. 

In cylindrical coordinates (p,Oj), and supposing that because of axial 
symmetry, c is independent of the angular coordinate, Eq. ( 5 )  can be ex- 
pressed by 

Now, it is necessary to solve Eq. (6) for each of the regions mentioned pre- 
viously, under the corresponding boundary conditions. In this case we 
have followed the procedure pointed out in Ref. 6, which is based on the 
use of Hankel’s finite transform (14-16). Later, the condition of steady- 
state flux will permit us to equate the solutions at the boundaries (x = 0 
and x = I ) and thus to obtain expressions for the overall diffusive resis- 
tance, Rr (or the corresponding diffusive permeability, PT = 1/RT) and for 
the concentrations c; and ci: 

where 

Jo and JI are the first kind Bessel functions of zero- and first-order, respec- 
tively, and the values a, represent the zeros of the equation J I  (a&) = 
0. Also: 

c1 - c2 c; = c2 + - 2 + r  
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PASSIVE POROUS FILMS. I 115 

where r is given by 

The use of Eq. (7), (9), and (10) in a particular case requires a previous 
evaluation of H(p,h), which can be laborious. In the study by Keller and 
Stein (6), this function was calculated for several values of p and h in the 
range 1 to lo3; however, as we will see later, the function H(p,A) can be 
evaluated by a simple approximation valid for a wide range of cases of 
practical interest. 

LINEAR APPROXIMATION OF H(b,A) 

If we evaluate in an explicit form the zeroth-order eigenfunction in the 
series expansion of H(p,h), we obtain 

This result suggests that, for limited values of the argument, the previous 
function can approximate to a simple expression. In fact, we have done a 
linear regression analysis on H against Up2, considering the intervals 
1.4 6 p < 103 and 8 < h < l@, and we have obtained the following 
correlation: 

H(p,A) = 0.250(A/p2) + 0.164 (13) 

with a correlation coefficient of 0.9999 for a total of 100 data points. 
As can be observed, the validity range of the above approximation cor- 

responds to a wide range of porosity and pore size values. Because p2 = 
lh, the limit values p = 1.4 and p = Id correspond approximately to 
values of E = 0.5 and E = respectively, thus including a wide range of 
membrane porosities. For A, assuming an average value for S of about 50 
pm (I 7-19), the approximation would be valid for membranes with pore 
radii between 0.05 and 6 pm. 
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116 MARTINEZ-VILLA, ARRIBAS, AND TWERINA 

With that, substituting Eq. (13) in Eq. (7) gives 

where a third term appears which is obviously related to the pore end ef- 
fects, which did not appear in the one-dimensional treatment. 
Now, if we express Eq. (3) equally as a function of the dimensionless 

parameters, we have 

By comparison of Eqs. (15) and (7), we conclude that both models agree 
when H(p,h) = h/4pz; but as we have stated in Eq. (12), this is the value 
which H(p/h) takes when we only consider the first term in their series ex- 
pansion, that is, when the pore end effects included in the remainder 
terms of the expansion are not considered. So the one-dimensional model 
can be considered as a first-order approximation for the analyzed model 
and, therefore, as a particular case. 

Finally, expressing Eq. (14) as a function of measurable properties: 

or, simply: 

RT = R, + 2RB + 2R, (17) 

Similarly, after substitution of Eq. (13) into Eq. (1 I), we obtain for the 
concentrations in the membrane-boundary layer interfaces c; and c; : 

c - c  c; = c, - u 
2 + n  

c1 - c2 
2 + n  c; = c2 + - 
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PASSIVE POROUS FILMS. I 117 

with 

In conclusion, we can say that the proposed model considers, besides 
the influence of the membrane and the boundary layers, the influence 
derived from the inhomogeneities in the pore surface distribution. Thus, a 
connection between the permeability results and the morphology of the 
membrane system has been established without compromising the classi- 
cal phenomenological formalism of an arrangement of diffusive resistan- 
ces in series, and including as a limiting case that in which the pore end ef- 
fects are negligible. 
On the other hand, the approximation used forH(p,h) does not include 

an important restriction in the utilization of the model, because it is valid 
for a great number of porous membranes. 

SYMBOLS 

radius of the equivalent pore 
half-distance between the centers of two adjacent pores 
bulk solute concentrations 
solute concentrations at the membrane-boundary layer 
interfaces 
solute diffusivities through the membrane pore and 
boundary layer, respectively 
function defined by Eq. (8) 
Bessel functions of zeroth and first order, respectively 
diffusive flux of solute 
membrane thickness 
surface pore density of membrane 
total diffusive permeability coefficient 
diffusive resistances of the membrane, boundary layer, 
and pore end, respectively 
diffusive resistance of the membrane system (total re- 
sistance) 
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Greeks 

r 
0 
V* 

effective pore radius (evaluated from Hagen-Poiseuille 
law) 
surface pore radius 
time 
axial coordinate inside the pore 

zeros of equation J,(u,,b) = 0 
b/u (dimensionless geometrical parameter) 
boundary layer thickness 
fractional open area of the membrane. 
effective porosity of membrane, calculated from re 
S/u (dimensionless geometrical parameter) 
2/a (dimensionless geometrical parameter) 
radial coordinate inside the pore 
relationship between parameters of the membrane sys- 
tem, defined by Eq. (20) 
dimensionless relationship defined by Eq. (1 1) 
angle coordinate 
Laplacian operator 
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